If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=216
We move all terms to the left:
z^2-(216)=0
a = 1; b = 0; c = -216;
Δ = b2-4ac
Δ = 02-4·1·(-216)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*1}=\frac{0-12\sqrt{6}}{2} =-\frac{12\sqrt{6}}{2} =-6\sqrt{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*1}=\frac{0+12\sqrt{6}}{2} =\frac{12\sqrt{6}}{2} =6\sqrt{6} $
| -12=4+x/4 | | 6(n+10)=102 | | 0=-y/2 | | -5=-3-x | | -208=-4(4-6x) | | -8+3v=-11 | | 3x+6=11−2x | | 28=-7(5+v) | | -2m+m=4 | | 4m-10=8 | | -10=x+5-6x | | x2-3=68+20 | | 2(9+x)=2(x+9) | | 20x+20x=0 | | 4x+3(2x-1)=8x+1 | | 2•x+16.5=4•+7.5 | | 20-4x=180 | | 7(s+2)=42 | | 4w+4+2w=2w+22+2w | | -1=x/9-6 | | -4x-4(3x)=0 | | (x+15)°=90° | | 2(3x+8)=12x+7-6x+9 | | 34+5r=-2+14r | | 104+33+5x+13=180 | | 97+x2+8x=x2+14x+49 | | 2q+6=7q | | 5x^2+33=8 | | 4x-5+3x-15=180 | | 3x+19=x+29 | | -8a+7=7 | | 4y-9=y+7+3y |